We are Pleased to Announce the Release of Adams 2016!

This release delivers new functionalities and major enhancements in many areas. Key highlights include:

- **Adams Explore**
 Spreadsheet interface for non-Adams users to perform MBD analysis from Excel

- **Runtime body switch between rigid and linear flex bodies**
 Optimizing analysis performance

- **Adams-EDEM co-simulation via ACSI**
 Optimizing heavy equipment for handling bulk materials

- **Stabilizer Bar Modeling for Adams Car**
 Streamlined creation of stabilizer bars

For more details on this release, please visit https://mscsoftware.subscribenet.com for the release guide. Several examples are also available to help you use these capabilities.

Thank you for your continued support of Adams.

Adams Product Team
Adams Explore

Adams Explore is a new feature in Adams View and Adams Car enabling the export of user-selected model characteristics to Excel from which one can modify model parameters, run simulations and generate plots.

Adams-EDEM Co-simulation via ACSI

Adams Co-simulation Interface (ACSI) has been extended to support co-simulation between Adams and the leading Discrete Element Modeling software EDEM. Applications include design of bulk materials handling equipment, earth-moving equipment and vehicle mobility on soft or loose terrain.

Runtime Body Switch Between Rigid and Linear Flex Bodies

Through the implementation of new Adams Solver command arguments, a flexible body’s representation can be switched between rigid and flexible during an analysis. Simulation time can be reduced by treating some components flexibly for only those portions of the analysis where the result accuracy actually requires it.

Stabilizer Bar Modeling for Adams Car

An “Anti-Roll Bar” (ARB) object has been made available in Adams Car. This functionality has been provided in both the Template Builder and Standard Interface mode.

In general, this functionality helps you to create an ARB with three different modelling methods: Simple, Beam and FE Part. The simple type ARB can be used for quick initial modelling while the Beam and FE Part types can be used for higher fidelity modelling.